Artículo
Ricardo Paiva · Mayo 15, 2020 Lectura de 9 min
Gestión de índices

¡Hola desarrollador!

Si has leído la parte 1 de este artículo, ya tienes una buena idea del tipo de índices que necesitas para tus clases y cómo definirlos. Lo siguiente es saber cómo gestionarlos.

Plan de consultas

(RECUERDA: Al igual que cualquier modificación en una clase, añadir índices en un sistema en producción conlleva riesgos: si los usuarios están actualizando o accediendo a datos mientras se rellena un índice, podrían obtener resultados vacíos o incorrectos a sus consultas, o incluso dañar los índices que se están formando. Ten en cuenta que hay pasos adicionales para definir y usar índices en un sistema en producción. Estos pasos se analizarán en esta sección, y se detallan en nuestra documentación).

00
0 1 68

Una cuestión muy común es cuál es la configuración ideal para el servidor web Apache HTTPD cuando se utiliza con HealthShare. El propósito de este artículo es describir la configuración inicial recomendada del servidor web para cualquier producto HealthShare. 

Como punto de partida, se recomienda la versión 2.4.x (64-bit) de Apache HTTPD. Existen versiones anteriores como la 2.2.x, pero no se recomienda esta versión por rendimiento y escalabilidad de HealthShare.

00
0 0 58

AWS ha liberado oficialmente su segunda generación de procesadores Graviton2 basados en ARM y asociados al tipo de instancia Amazon EC2 M6g, que presume de ser hasta un 40% mejor en precio-rendimiento sobre la actual generación de instancias M5 basadas en Xeon. 

Hace pocos meses, Inthhis nos llevó a suportar arquitecturas ARM64 por primera vez.

¡Ahora puedes probar InterSystems IRIS e InterSystems IRIS for Health sobre instancias Amazon EC2 M6g basadas en Graviton2 accesibles a través del AWS Marketplace!

00
0 0 41

En la última publicación programamos recogidas de métricas de rendimiento usando pButtons, a lo largo de 24 horas. En esta publicación, analizaremos algunas de esas métricas clave que se están recogiendo y cómo se relacionan con el hardware del sistema subyacente. También empezaremos a explorar la relación entre las métricas de Caché (o de cualquiera de las plataformas de datos de InterSystems) y las métricas del sistema. Veremos también cómo usar estas métricas para entender el pulso diario de tu sistema y diagnosticar problemas de rendimiento.

00
0 0 36

¡Hola Comunidad!

Os traemos el cuarto episodio de Data Points, el podcast de InterSystems en inglés. En esta ocasión, charlamos con @Benjamin De Boe, que nos explica algunas de las cosas que podéis hacer para optimizar vuestras consultas SQL en InterSystems IRIS.

Todos hemos oído — tanto de nosotros mismos como de otros — la queja "esto va demasiado lento". Creo que Benjamin ha hecho un gran trabajo revisando todas las cosas en las que os podeis fijar en vuestras consultas en IRIS para descubrir lo que se puede mejorar.

00
0 0 31
Artículo
Jose Tomas Salvador · Feb 10, 2021 Lectura de 4 min
Recursos sobre el rendimiento de SQL

Hay tres aspectos muy importantes en cualquier conversación sobre el rendimiento de SQL: los Índices, el TuneTable, y el Plan de ejecución. En los PDFs adjuntos a este artículo se incluyen presentaciones antiguas sobre estos temas. En los enlaces a nuestra documentación debajo, se ofrece más información sobre estos y otros asuntos relacionados con el rendimiento de SQL. La formación online también refuerza varios de estos temas. Además, hay varios artículos de la Comunidad de Desarrolladores que están relacionados con el rendimiento de SQL y que mostramos a continuación.

Hay bastantes repeticiones en la información que se muestra a continuación.  Los aspectos más importantes a considerar sobre el rendimiento de SQL son:

  • Los tipos de índices que están disponibles
  • Por qué utilizar un tipo de índice en lugar de otro
  • La información que TuneTable recaba para crear una tabla y lo que esto significa para Optimizer
  • Cómo leer un Plan de ejecución para comprender mejor si una consulta es buena o mala
00
1 1 30

Nota (junio de 2019): han cambiado muchas cosas para obtener los detalles más recientes, haz clic aquí
Nota (septiembre de 2018): ha habido grandes cambios desde que esta publicación apareció por primera vez; sugiero que utilices la versión del contenedor en Docker dado que el proyecto y la información para que se ejecute como un contenedor sigue publicada en GitHub, en el mismo lugar, para que puedas descargarlo, ejecutarlo y modificarlo, si lo necesitas.

Cuando trabajo con clientes en revisiones de rendimiento, planificaciones de capacidad y resolución de problemas, con frecuencia tengo que descomprimir y revisar las métricas del sistema operativo y de caché desde pButtons. En vez de lidiar con los archivos html para cortar y pegar secciones que serán graficadas en Excel, hace algún tiempo escribí una publicación sobre una herramienta para descomprimir las métricas de pButtons, escrita con el intérprete de unix, perl y los scripts de awk. Si bien este es un valioso ahorro de tiempo, no es la historia completa…

00
0 0 16

Objetivo

Esta herramienta se usa para generar una Entrada/Salida (E/S) de lectura aleatoria desde dentro de la base de datos. La finalidad de esta herramienta es llevar la mayor cantidad de tareas posibles para conseguir las IOPS objetivo y asegurar que se mantienen tiempos de respuesta de disco aceptables. Los resultados recopilados de las pruebas de E/S variarán de configuración a configuración, de acuerdo con el subsistema de E/S. Antes de ejecutar estas pruebas, asegúrate de que el sistema operativo y la monitorización del nivel de almacenamiento estén configurados para capturar métricas de desempeño de E/S para su posterior análisis.

10
0 0 16

En el artículo anterior creamos un gráfico simple con los datos de un solo archivo. Ahora bien, como todos sabemos, a veces tenemos diferentes archivos de datos para analizar y correlacionar. Así que en este artículo vamos a cargar datos adicionales de perfmon y aprenderemos a representarlos en el mismo gráfico.

00
0 0 11