Artículo
Ariel Arias · Nov 22 Lectura de 6 min
Linked Tables + Analítica

Caso de Uso: tenemos acceso a datos remotos; vía JDBC o vía ODBC desde IRIS, y queremos presentar la información en un Dashboard, pero no deseamos o no podemos migrar dicha información a IRIS.

Alternativa: Tomamos ventaja de la conexión al origen de Datos, usamos "Linked Tables" de IRIS, luego podemos realizar el análisis a estos datos y presentarlos finalmente en un Dashboard.

Para este ejemplo vamos a realizarlo en este escenario:

1 0
1 12

¡Hola a todos!

Hoy instalaremos Jupyter Notebook y vamos a conectarlo con Apache Spark e InterSystems IRIS.

Nota: Los siguientes procedimientos los hice en Ubuntu 18.04 y Python 3.6.5.

Introducción

Si estás buscando un bloc de notas que sea reconocido, difundido ampliamente y muy popular entre los usuarios de Python, en lugar de utilizar Apache Zeppelin, deberías elegir Jupyter notebook. Jupyter notebook es una excelente y muy poderosa herramienta para la "ciencia de datos", que cuenta con una comunidad muy grande, además de muchas funciones y software adicional. Jupyter notebook permite crear y compartir documentos que contienen código en tiempo real, ecuaciones, visualizaciones y texto narrativo. Sus aplicaciones incluyen la limpieza y transformación de los datos, simulaciones numéricas, modelamiento estadístico, visualización de datos, machine learning y muchas funciones más. Y lo más importante, existe una gran comunidad que ayuda a resolver los problemas que surjan.

0 1
0 295