Artículo
· 25 sep, 2019 Lectura de 4 min
Algoritmo de agrupamiento K-medias sobre datos en IRIS

¡Hola a tod@s!

K-Medias es uno de los algoritmos de aprendizaje no supervisado más simples para resolver el problema de agrupamiento. Este problema consiste en formar grupos de objetos con características similares. Por ejemplo, si tenemos una imagen de una pelota roja sobre césped verde, K-Medias separará los pixels de la imagen en dos grupos (clusters): un grupo con los pixels que forman la pelota, y otro grupo con los pixels del césped.

Repasaremos un artículo publicado por Niyaz Khafizov en el que implementaremos un ejemplo donde cargaremos un conjunto de datos en IRIS y ejecutaremos el algoritmo K-Medias utilizando Apache Zeppelin con el conector Spark. Utilizaremos InterSystems IRIS, Apache Zeppelin 0.8.0 y python.

0 0
0 1.6K
Artículo
· 6 jul, 2020 Lectura de 11 min
Machine Learning con Spark e InterSystems IRIS

Apache Spark se ha convertido rápidamente en una de las tecnologías más atractivas para la analítica de big data y el machine learning. Spark es un motor de procesamiento de datos generales, creado para usar con entornos de procesamiento en clúster. Su corazón es el RDD (Resilient Distributed Dataset), que representa un conjunto de datos distribuido con tolerancia a fallos, sobre el que se puede operar en paralelo entre los nodos de un clúster. Spark se implementa con una combinación de Java y Scala, por lo que viene como una biblioteca que puede ejecutarse sobre cualquier JVM. Spark también es compatible con Python (PySpark) y R (SparkR) e incluye bibliotecas para SQL (SparkSQL), machine learning (MLlib), procesamiento de gráficas (GraphX) y procesamiento de flujos (Spark Streaming).

1 0
0 921

Palabras clave PyODBC, unixODBC, IRIS, IntegratedML, Jupyter Notebook, Python 3

Propósito

Hace unos meses traté el tema de la "conexión con JDBC desde Python a la base de datos de IRIS", y desde entonces utilicé ese artículo con más frecuencia que mi propia nota oculta en mi PC. Por eso, traigo aquí otra nota de 5 minutos sobre cómo hacer una "conexión con JDBC desde Python a la base de datos de IRIS". ODBC y PyODBC parecen bastante fáciles de configurar en un cliente de Windows, sin embargo, siempre me atasco un poco en la configuración de un cliente unixODBC y PyODBC en un servidor de estilo Linux/Unix. ¿Existe un enfoque tan sencillo y consistente como se supone que debe ser para hacer que el trabajo de instalación de PyODBC/unixODBC funcione en un cliente linux estándar sin ninguna instalación de IRIS, contra un servidor IRIS remoto?

0 0
0 546
Artículo
· 20 abr, 2023 Lectura de 2 min
Apache Superset con InterSystems IRIS

Apache Superset es una moderna plataforma para la visualización y exploración de datos. Superset puede reemplazar o aumentar las herramientas patentadas de business intelligence para muchos equipos. Y se puede integrar con una gran variedad de fuentes de datos.

¡Y ahora es posible utilizarla con InterSystems IRIS!

Hay disponible una demo online que usa IRIS Cloud SQL como fuente de datos.

0 0
0 540
Artículo
· 23 jun, 2022 Lectura de 7 min
Conector Power BI para InterSystems IRIS. Parte I

En un mundo en constante cambio, las empresas deben innovar para ser competitivas. Esto asegura que tomarán decisiones con agilidad y seguridad, aspirando a obtener buenos resultados con mayor exactitud.

Las herramientas de Business Intelligence (BI) ayudan a las compañías a tomar decisiones inteligentes en vez de confiar en la "prueba y error". Estas decisiones inteligentes pueden ser la diferencia entre el éxito y el fracaso en el mercado.

Microsoft Power BI es una de las herramientas de Business Intelligence líderes. Con unos pocos clics, Power BI permite a los gerentes y analistas explorar los datos de la compañía. Esto es importante porque cuando es fácil accceder y visualizar los datos, es más probable que se usen para tomar decisiones.


2 1
1 437

¡Hola desarrolladores!

¿Os habéis encontrado con la necesidad de crear una base de datos, un namespace o una aplicación web de manera programática?
Quiero compartir con vosotros un fragmento de código ObjectScript que permite crear una base de datos, un namespace y una aplicación web para InterSystems IRIS.

0 0
0 416

Durante las últimas semanas, el equipo de Solution Architecture (Soluciones de Arquitectura) ha estado trabajando para terminar la carga de trabajo de 2019: esto incluyó la creación del código abierto de la Demostración de Readmisiones que llevó a cabo HIMSS el año pasado, para poder ponerla a disposición de cualquiera que busque una forma interactiva de explorar las herramientas proporcionadas por IRIS.

0 1
0 303

¡Hola desarrolladores!

Últimamente he estado probando el módulo csvgen y buscaba un fichero CSV para probar. Resulta que encontré un fichero muy interesante en Data.World con estadísticas sobre los episodios de Game of Thrones (Juego de Tronos). Estadísticas sobre muertes 😱.

¡Han documentado todos los asesinatos a lo largo de las 8 temporadas y han anotado dónde, quién, qué clan y con qué arma ha matado a otro personaje!

0 0
0 285

¡Hola desarrolladores!

¿Sabéis cómo crear una solución de analítica de datos con InterSystems IRIS?

Para empezar, pongámonos de acuerdo sobre lo que es una solución de analítica de datos - este podría ser un tema muy amplio -. Por ello, acotaremos el conjunto de soluciones que se podían presentar al Concurso de Analítica de Datos.

Y a continuación examinaremos tres tipos de soluciones para analítica de datos: de monitorización, de análisis interactivo y de elaboración de informes (reporting).

0 1
0 250
Artículo
· 14 ene, 2020 Lectura de 5 min
Escalabilidad horizontal con InterSystems IRIS

Nuestra plataforma de datos InterSystems IRIS es una plataforma perfecta para todo lo que necesite realizar con sus datos, ya sean transacciones, análisis o ambos. Incluye muchas de las funciones de Caché y Ensemble que nuestros clientes ya conocen, y en este artículo descubriremos un poco más acerca de una de sus nuevas funcionalidades: SQL Sharding.

0 0
0 223

Este artículo describe un diseño arquitectónico de complejidad intermedia para DeepSee. Al igual que en el ejemplo anterior, esta implementación incluye bases de datos separadas para almacenar la información, la implementación y la configuración de DeepSee. También presenta dos nuevas bases de datos: la primera para almacenar los globals necesarios para la sincronización, la segunda para almacenar tablas de hechos e índices.

0 0
0 184

Tanto si accedes a DeepSee por primera vez como si estás configurando DeepSee en una instancia nueva, puedes encontrar dos incidencias habituales después de hacer clic en la opción "DeepSee" en el Portal de Administración del Sistema.

Incidencia #1: ¡Arquitech/Analyzer aparece en gris!

Incidencia #2: Se debe habilitar DeepSee antes de su uso.

Incidencia #1: ¡Arquitech/Analyzer aparece en gris!

2 0
0 183
Artículo
· 19 ago, 2020 Lectura de 2 min
Uso de modelos PMML en tus Business Processes

Ejecutar modelos predictivos de forma nativa en un "Business Process" ("Proceso Empresarial") de InterSystems IRIS siempre ha sido, por supuesto, el objetivo de nuestro soporte para PMML, pero de alguna forma nunca formó parte del paquete porque había algunas dependencias y elecciones que era necesario analizar y decidir. En cualquier caso, gracias a algunas presiones y al código ofrecido amablemente por @Amir Samary (¡gracias de nuevo, Amir!), finalmente conseguimos empaquetarlo en un repositorio de GitHub para que lo disfruteis, lo valoreis y hagáis sugerencias.

1 0
0 179
Artículo
· 22 nov, 2022 Lectura de 6 min
Linked Tables + Analítica

Caso de Uso: tenemos acceso a datos remotos; vía JDBC o vía ODBC desde IRIS, y queremos presentar la información en un Dashboard, pero no deseamos o no podemos migrar dicha información a IRIS.

Alternativa: Tomamos ventaja de la conexión al origen de Datos, usamos "Linked Tables" de IRIS, luego podemos realizar el análisis a estos datos y presentarlos finalmente en un Dashboard.

Para este ejemplo vamos a realizarlo en este escenario:

1 0
1 172

InterSystems IRIS Business Intelligence te permite mantener actualizados tus modelos analíticos o cubos de varias formas. Este artículo tratará sobre Construir/Generar vs Sincronizar. Hay maneras de actualizar manualmente los cubos, pero son casos muy especiales y casi siempre los cubos se mantienen actualizados por medio de la (Re)construcción o la sincronización.

¿Qué es Construir?

0 1
0 135
Artículo
· 2 mar, 2021 Lectura de 1 min
Análisis de errores de aplicación

¡Hola, desarrolladores!

Como sabeis, los errores de la aplicación están en el global ^ERRORS. Aparecen si los llamas:

d e.Log() 

en la sección Catch de Try-Catch.

Con la propuesta de @Robert Cemper, ahora se puede utilizar SQL para examinarlo.

Inspirado por el módulo de Robert, presenté un módulo simple de IRIS Analytics que muestra estos errores en un dashboard:

1 0
0 155

Según la consultora IDC, el 80% de todos los datos producidos son NoSQL. Mira:

Hay documentos digitales y escaneados, textos online y offline, contenido BLOB (objeto binario grande) en SQL, imágenes, vídeos y audio. ¿Te imaginas una iniciativa de Analítica Corporativa sin todos estos datos para analizar y apoyar las decisiones?

1 0
1 147

Hoy en día es muy común que los datos que necesitas vengan de diferentes fuentes (e.g. aplicaciones externas e internas, distintas bases de datos y servicios, APIs, etc.). Además, seguro que tienes múltiples tipos de consumidores diferentes (e.g. usuarios finales, otras aplicaciones, servicios que publicas a terceros, etc.) y cada uno necesitará acceder a la información de forma diferente y para distintos objetivos. ¿Cómo construir una capa que de forma sencilla te permita gestionar estas necesidades? Hoy hablamos de Data Fabric 👈.

image

1 0
0 146
Artículo
· 23 jun, 2021 Lectura de 6 min
OCR y PLN juntos en InterSystems IRIS

Según la consultora IDC, más del 80% de la información es de tipo NoSQL, especialmente texto en documentos. Cuando los servicios o aplicaciones digitales no procesan toda esta información, la empresa pierde. Para resolver este desafío, es posible utilizar la tecnología OCR. El Reconocimiento Óptico de Caracteres (OCR) utiliza la tecnología de machine learning y/o el reconocimiento de patrones en imágenes para transformar los pixeles de las imágenes en texto.

0 0
0 145
Artículo
· 12 dic, 2022 Lectura de 4 min
Aplicación IRIS RAD Studio

@José Pereira y yo hemos creado un proyecto del que queremos hablar en este artículo.

¿Qué es IRIS RAD Studio?

IRIS RAD Studio es nuestra idea de una solución low-code para hacer más fácil la vida del desarrollador.

¿Por qué?

¿Y por qué no? Las aplicaciones low-code se han hecho muy populares últimamente. La imagen de abajo muestra el "Cuadrante mágico" ofrecido por la consultora Gartner para plataformas de aplicaciones low-code empresariales, y que muestra lo interesante que es este mercado.

0 0
0 144

Transforma fácilmente un archivo CSV en una vista previa de DeepSee: la plataforma de inteligencia de negocios de InterSystems.

Puedes encontrar AnalyzeThis en InterSystems Open Exchange. Utiliza el enlace de descarga para ir a GitHub y comienza a instalar el proyecto. Sigue las instrucciones de la sección Installation del README de GitHub.

0 0
0 126

Este artículo describe un diseño arquitectónico más flexible para DeepSee. Al igual que en el ejemplo anterior, esta implementación incluye bases de datos separadas para almacenar la memoria caché, la implementación y la configuración de DeepSee y la sincronización de los globals. Este ejemplo introduce una nueva base de datos para almacenar los índices de DeepSee. Redefiniremos los mapeos globales para que los índices de DeepSee no se mapeeen junto con las tablas de hechos y dimensiones.

0 0
1 125

Acabo de redactar un ejemplo rápido para ayudar a un colega a cargar datos en IRIS desde R usando RJDBC y pensé que sería útil compartirlo aquí para futuras consultas.

Fue bastante sencillo, aparte de que a IRIS no le gusta el uso de puntos "." en los nombres de las columnas; la solución alternativa es simplemente renombrar las columnas. Alguien con más conocimientos que yo en R seguramente pueda ofrecer un enfoque más amplio smiley

# Es necesario un valor válido para el JAVA_HOME antes de cargar la librería (RJDBC)
Sys.setenv(JAVA_HOME="C:\\Java\\jdk-8.0.322.6-hotspot\\jre")
library(RJDBC)
library(dplyr)

# Conexión a IRIS – se requiere la ruta a la librería JAR de InterSystems JDBC JAR de tu instalación
drv <- JDBC("com.intersystems.jdbc.IRISDriver", "C:\\InterSystems\\IRIS\\dev\\java\\lib\\1.8\\intersystems-jdbc-3.3.0.jar","\"")
conn <- dbConnect(drv, "jdbc:IRIS://localhost:1972/USER", "IRIS Username", "IRIS Password")
dbListTables(conn)

# Para mayor confusión, cargar el dataset de IRIS:)
data(iris)

# A IRIS no le gustan los puntos "." en el nombre de las columnas, así que los renombramos. (Probablemente se pueda codificar de una forma más genérica, pero no soy muy bueno con R.)
iris <- iris %>% rename(sepal_length = Sepal.Length, sepal_width = Sepal.Width, petal_length = Petal.Length, petal_width = Petal.Width)

# dbWriteTable/dbGetQuery/dbReadTable funcionan
dbWriteTable(conn, "iris", iris, overwrite = TRUE)
dbGetQuery(conn, "select count(*) from iris")
d <- dbReadTable(conn, "iris")

0 0
0 121