Este artículo describe un diseño arquitectónico de complejidad intermedia para DeepSee. Al igual que en el ejemplo anterior, esta implementación incluye bases de datos separadas para almacenar la información, la implementación y la configuración de DeepSee. También presenta dos nuevas bases de datos: la primera para almacenar los globals necesarios para la sincronización, la segunda para almacenar tablas de hechos e índices.

0 0
0 23

En un mundo en constante cambio, las empresas deben innovar para ser competitivas. Esto asegura que tomarán decisiones con agilidad y seguridad, aspirando a obtener buenos resultados con mayor exactitud.

Las herramientas de Business Intelligence (BI) ayudan a las compañías a tomar decisiones inteligentes en vez de confiar en la "prueba y error". Estas decisiones inteligentes pueden ser la diferencia entre el éxito y el fracaso en el mercado.

Microsoft Power BI es una de las herramientas de Business Intelligence líderes. Con unos pocos clics, Power BI permite a los gerentes y analistas explorar los datos de la compañía. Esto es importante porque cuando es fácil accceder y visualizar los datos, es más probable que se usen para tomar decisiones.



2 1
1 40

InterSystems IRIS Business Intelligence te permite mantener actualizados tus modelos analíticos o cubos de varias formas. Este artículo tratará sobre Construir/Generar vs Sincronizar. Hay maneras de actualizar manualmente los cubos, pero son casos muy especiales y casi siempre los cubos se mantienen actualizados por medio de la (Re)construcción o la sincronización.

¿Qué es Construir?

0 1
0 29

¡Hola desarrolladores!

¿Sabéis cómo crear una solución de analítica de datos con InterSystems IRIS?

Para empezar, pongámonos de acuerdo sobre lo que es una solución de analítica de datos - este podría ser un tema muy amplio -. Por ello, acotaremos el conjunto de soluciones que se podían presentar al Concurso de Analítica de Datos.

Y a continuación examinaremos tres tipos de soluciones para analítica de datos: de monitorización, de análisis interactivo y de elaboración de informes (reporting)

0 1
0 65

La metodología OKR (Objetivos y Resultados Clave) es utilizada por las empresas más grandes del mundo (como Google, Netflix, Spotify, BMW, Linkedin, etc.) para una gestión ágil del rendimiento. Fue creada en los años 70 por Andrew Grove, presidente de Intel, y presentada al público en su famoso libro “High Output Management” ("Gestión de alto rendimiento").

Sobre 1998 John Doerr, uno de los mayores inversores de riesgo (venture capitalist) del mundo, tras conocer la metodología OKR de Intel, se la dio a conocer a Larry Page y Sergey Brin, que empezaban una pequeña empresa llamada Google.

Sergey y Larry vieron el gran potencial de la metodología y comenzaron a escribir los primeros OKRs para Google y después sus OKRs individuales.

Desde entonces, esta práctica se ha convertido en una rutina trimestral en la compañía. Según Rick Klau (Google Ventures), “Google no fue Google” hasta que empezó a poner en práctica la metodología OKR en sus inicios.

Los beneficios de OKR son:

0 0
0 54

AnalyzeThis es una herramienta para obtener la vista previa de tus propios datos dentro de InterSystems BI. Te permite experimentar directamente con InterSystems BI y darte cuenta de la potencia y el valor que puede aportar a tu organización. Además de obtener una visión rápida de InterSystems BI mediante la importación de un fichero CSV con tus datos, también soporta ahora Clases y Consultas SQL como fuentes de datos (a partir de la versión v1.1.0!).

0 1
0 32

¡Hola desarrolladores!

Últimamente he estado probando el módulo csvgen y buscaba un fichero CSV para probar. Resulta que encontré un fichero muy interesante en Data.World con estadísticas sobre los episodios de Game of Thrones (Juego de Tronos). Estadísticas sobre muertes 😱.

¡Han documentado todos los asesinatos a lo largo de las 8 temporadas y han anotado dónde, quién, qué clan y con qué arma ha matado a otro personaje!

0 0
0 65
Artículo
Eduardo Anglada · Jul 15, 2021 Lectura de 5 min
Estadísticas sobre COVID-19 con InterSystems IRIS

¡Hola a todos!

Todos los días la universidad Johns Hopkins publica nuevos datos sobre el estado de la pandemia del coronavirus COVID-19.

Creé un sencillo panel de control con InterSystems IRIS Analytics usando InterSystems IRIS Community Edition en Docker, implementado en Kubernetes GCP, para mostrar los datos clave sobre el avance de la enfermedad.

Este panel de control es un ejemplo de como la información en formato CSV podría ser analizada con IRIS Analytics e implementada en Kubernetes GCP, con la forma de InterSystems IRIS Community Edition.

0 0
0 44

Palabras clave PyODBC, unixODBC, IRIS, IntegratedML, Jupyter Notebook, Python 3

Propósito

Hace unos meses traté el tema de la "conexión con JDBC desde Python a la base de datos de IRIS", y desde entonces utilicé ese artículo con más frecuencia que mi propia nota oculta en mi PC. Por eso, traigo aquí otra nota de 5 minutos sobre cómo hacer una "conexión con JDBC desde Python a la base de datos de IRIS". ODBC y PyODBC parecen bastante fáciles de configurar en un cliente de Windows, sin embargo, siempre me atasco un poco en la configuración de un cliente unixODBC y PyODBC en un servidor de estilo Linux/Unix. ¿Existe un enfoque tan sencillo y consistente como se supone que debe ser para hacer que el trabajo de instalación de PyODBC/unixODBC funcione en un cliente linux estándar sin ninguna instalación de IRIS, contra un servidor IRIS remoto?

0 0
0 163
Artículo
Eduardo Anglada · Jun 23, 2021 Lectura de 6 min
OCR y PLN juntos en InterSystems IRIS

Según la consultora IDC, más del 80% de la información es de tipo NoSQL, especialmente texto en documentos. Cuando los servicios o aplicaciones digitales no procesan toda esta información, la empresa pierde. Para resolver este desafío, es posible utilizar la tecnología OCR. El Reconocimiento Óptico de Caracteres (OCR) utiliza la tecnología de machine learning y/o el reconocimiento de patrones en imágenes para transformar los pixeles de las imágenes en texto.

0 0
0 53

Durante las últimas semanas, el equipo de Solution Architecture (Soluciones de Arquitectura) ha estado trabajando para terminar la carga de trabajo de 2019: esto incluyó la creación del código abierto de la Demostración de Readmisiones que llevó a cabo HIMSS el año pasado, para poder ponerla a disposición de cualquiera que busque una forma interactiva de explorar las herramientas proporcionadas por IRIS.

0 0
0 58

Tanto si accedes a DeepSee por primera vez como si estás configurando DeepSee en una instancia nueva, puedes encontrar dos incidencias habituales después de hacer clic en la opción "DeepSee" en el Portal de Administración del Sistema.

Incidencia #1: ¡Arquitech/Analyzer aparece en gris!

Incidencia #2: Se debe habilitar DeepSee antes de su uso.

Incidencia #1: ¡Arquitech/Analyzer aparece en gris!

2 0
0 69
Artículo
Kurro Lopez · Mar 2, 2021 Lectura de 1 min
Análisis de errores de aplicación

¡Hola, desarrolladores!

Como sabeis, los errores de la aplicación están en el global ^ERRORS. Aparecen si los llamas:

d e.Log() 

en la sección Catch de Try-Catch.

Con la propuesta de @Robert Cemper, ahora se puede utilizar SQL para examinarlo.

Inspirado por el módulo de Robert, presenté un módulo simple de IRIS Analytics que muestra estos errores en un dashboard:

1 0
0 88
Artículo
Daniel Franco · Ago 19, 2020 Lectura de 2 min
Uso de modelos PMML en tus Business Processes

Ejecutar modelos predictivos de forma nativa en un "Business Process" ("Proceso Empresarial") de InterSystems IRIS siempre ha sido, por supuesto, el objetivo de nuestro soporte para PMML, pero de alguna forma nunca formó parte del paquete porque había algunas dependencias y elecciones que era necesario analizar y decidir. En cualquier caso, gracias a algunas presiones y al código ofrecido amablemente por  @Amir Samary (¡gracias de nuevo, Amir!), finalmente conseguimos empaquetarlo en un repositorio de GitHub para que lo disfruteis, lo valoreis y hagáis sugerencias.

1 0
0 75
Artículo
Pierre-Yves Duq... · Jul 6, 2020 Lectura de 11 min
Machine Learning con Spark e InterSystems IRIS

Apache Spark se ha convertido rápidamente en una de las tecnologías más atractivas para la analítica de big data y el machine learning. Spark es un motor de procesamiento de datos generales, creado para usar con entornos de procesamiento en clúster. Su corazón es el RDD (Resilient Distributed Dataset), que representa un conjunto de datos distribuido con tolerancia a fallos, sobre el que se puede operar en paralelo entre los nodos de un clúster. Spark se implementa con una combinación de Java y Scala, por lo que viene como una biblioteca que puede ejecutarse sobre cualquier JVM. Spark también es compatible con Python (PySpark) y R (SparkR) e incluye bibliotecas para SQL (SparkSQL), machine learning (MLlib), procesamiento de gráficas (GraphX) y procesamiento de flujos (Spark Streaming).

1 0
0 510

Transforma fácilmente un archivo CSV en una vista previa de DeepSee: la plataforma de inteligencia de negocios de InterSystems.

Puedes encontrar AnalyzeThis en InterSystems Open Exchange. Utiliza el enlace de descarga para ir a GitHub y comienza a instalar el proyecto. Sigue las instrucciones de la sección Installation del README de GitHub.

0 0
0 68

¡Hola desarrolladores!

¿Os habéis encontrado con la necesidad de crear una base de datos, un namespace o una aplicación web de manera programática?
Quiero compartir con vosotros un fragmento de código ObjectScript que permite crear una base de datos, un namespace y una aplicación web para InterSystems IRIS.

0 0
0 206
Artículo
Ricardo Paiva · Ene 14, 2020 Lectura de 5 min
Escalabilidad horizontal con InterSystems IRIS

Nuestra plataforma de datos InterSystems IRIS es una plataforma perfecta para todo lo que necesite realizar con sus datos, ya sean transacciones, análisis o ambos. Incluye muchas de las funciones de Caché y Ensemble que nuestros clientes ya conocen, y en este artículo descubriremos un poco más acerca de una de sus nuevas funcionalidades: SQL Sharding.

0 0
0 110
Artículo
Alberto Fuentes · Sep 25, 2019 Lectura de 4 min
Algoritmo de agrupamiento K-medias sobre datos en IRIS

¡Hola a tod@s!

K-Medias es uno de los algoritmos de aprendizaje no supervisado más simples para resolver el problema de agrupamiento. Este problema consiste en formar grupos de objetos con características similares. Por ejemplo, si tenemos una imagen de una pelota roja sobre césped verde, K-Medias separará los pixels de la imagen en dos grupos (clusters): un grupo con los pixels que forman la pelota, y otro grupo con los pixels del césped.

Repasaremos un artículo publicado por Niyaz Khafizov en el que implementaremos un ejemplo donde cargaremos un conjunto de datos en IRIS y ejecutaremos el algoritmo K-Medias utilizando Apache Zeppelin con el conector Spark. Utilizaremos InterSystems IRIS, Apache Zeppelin 0.8.0 y python.

0 0
0 1,228