Acabo de redactar un ejemplo rápido para ayudar a un colega a cargar datos en IRIS desde R usando RJDBC y pensé que sería útil compartirlo aquí para futuras consultas.

Fue bastante sencillo, aparte de que a IRIS no le gusta el uso de puntos "." en los nombres de las columnas; la solución alternativa es simplemente renombrar las columnas. Alguien con más conocimientos que yo en R seguramente pueda ofrecer un enfoque más amplio smiley

# Es necesario un valor válido para el JAVA_HOME antes de cargar la librería (RJDBC)
Sys.setenv(JAVA_HOME="C:\\Java\\jdk-8.0.322.6-hotspot\\jre")
library(RJDBC)
library(dplyr)

# Conexión a IRIS – se requiere la ruta a la librería JAR de InterSystems JDBC JAR de tu instalación
drv <- JDBC("com.intersystems.jdbc.IRISDriver", "C:\\InterSystems\\IRIS\\dev\\java\\lib\\1.8\\intersystems-jdbc-3.3.0.jar","\"")
conn <- dbConnect(drv, "jdbc:IRIS://localhost:1972/USER", "IRIS Username", "IRIS Password")
dbListTables(conn)

# Para mayor confusión, cargar el dataset de IRIS:)
data(iris)

# A IRIS no le gustan los puntos "." en el nombre de las columnas, así que los renombramos. (Probablemente se pueda codificar de una forma más genérica, pero no soy muy bueno con R.)
iris <- iris %>% rename(sepal_length = Sepal.Length, sepal_width = Sepal.Width, petal_length = Petal.Length, petal_width = Petal.Width)

# dbWriteTable/dbGetQuery/dbReadTable funcionan
dbWriteTable(conn, "iris", iris, overwrite = TRUE)
dbGetQuery(conn, "select count(*) from iris")
d <- dbReadTable(conn, "iris")

0 0
0 121

Este artículo describe un diseño arquitectónico más flexible para DeepSee. Al igual que en el ejemplo anterior, esta implementación incluye bases de datos separadas para almacenar la memoria caché, la implementación y la configuración de DeepSee y la sincronización de los globals. Este ejemplo introduce una nueva base de datos para almacenar los índices de DeepSee. Redefiniremos los mapeos globales para que los índices de DeepSee no se mapeeen junto con las tablas de hechos y dimensiones.

0 0
1 125

Durante las últimas semanas, el equipo de Solution Architecture (Soluciones de Arquitectura) ha estado trabajando para terminar la carga de trabajo de 2019: esto incluyó la creación del código abierto de la Demostración de Readmisiones que llevó a cabo HIMSS el año pasado, para poder ponerla a disposición de cualquiera que busque una forma interactiva de explorar las herramientas proporcionadas por IRIS.

0 1
0 305
Artículo
· 12 dic, 2022 Lectura de 4 min
Aplicación IRIS RAD Studio

@José Pereira y yo hemos creado un proyecto del que queremos hablar en este artículo.

¿Qué es IRIS RAD Studio?

IRIS RAD Studio es nuestra idea de una solución low-code para hacer más fácil la vida del desarrollador.

¿Por qué?

¿Y por qué no? Las aplicaciones low-code se han hecho muy populares últimamente. La imagen de abajo muestra el "Cuadrante mágico" ofrecido por la consultora Gartner para plataformas de aplicaciones low-code empresariales, y que muestra lo interesante que es este mercado.

0 0
0 145
Artículo
· 23 jun, 2021 Lectura de 6 min
OCR y PLN juntos en InterSystems IRIS

Según la consultora IDC, más del 80% de la información es de tipo NoSQL, especialmente texto en documentos. Cuando los servicios o aplicaciones digitales no procesan toda esta información, la empresa pierde. Para resolver este desafío, es posible utilizar la tecnología OCR. El Reconocimiento Óptico de Caracteres (OCR) utiliza la tecnología de machine learning y/o el reconocimiento de patrones en imágenes para transformar los pixeles de las imágenes en texto.

0 0
0 145
Artículo
· 14 dic, 2022 Lectura de 2 min
Log de datos de un servidor web real

Me gustaría compartir con la comunidad un log de datos de un servidor web de un cliente nuestro desde hace muchos años, una compañia operadora.

Su servidor web funciona sobre Apache y contiene datos útiles para analizar la carga y la actividad de los motores de búsqueda.

Tras instalar el proyecto, podrás ver los datos generados durante unos cuantos meses y que muestran la carga y la actividad típica de clientes, bots... también podrás ver cómo dicha carga depende del día de la semana, si son vacaciones o no, así como del momento del día.

0 0
0 88

Palabras clave PyODBC, unixODBC, IRIS, IntegratedML, Jupyter Notebook, Python 3

Propósito

Hace unos meses traté el tema de la "conexión con JDBC desde Python a la base de datos de IRIS", y desde entonces utilicé ese artículo con más frecuencia que mi propia nota oculta en mi PC. Por eso, traigo aquí otra nota de 5 minutos sobre cómo hacer una "conexión con JDBC desde Python a la base de datos de IRIS". ODBC y PyODBC parecen bastante fáciles de configurar en un cliente de Windows, sin embargo, siempre me atasco un poco en la configuración de un cliente unixODBC y PyODBC en un servidor de estilo Linux/Unix. ¿Existe un enfoque tan sencillo y consistente como se supone que debe ser para hacer que el trabajo de instalación de PyODBC/unixODBC funcione en un cliente linux estándar sin ninguna instalación de IRIS, contra un servidor IRIS remoto?

0 0
0 548

Llamamos Procesamiento Híbrido Transaccional y Analítico (HTAP por sus siglas en inglés) a la capacidad de recuperar numerosos registros por segundo, mientras que a la vez se permiten consultas simultáneas en tiempo real. También se llama Analítica Transaccional ó Transanalítica y es un elemento muy útil en escenarios en los que disponemos de un flujo constante de datos en tiempo real, como podría ser el caso de datos provenientes de sensores IIOT o información de las fluctuaciones en el mercado bursátil y nos permite satisfacer la necesidad de consultar estos conjuntos de datos en tiempo real o casi en tiempo real.

Os comparto un ejemplo que podréis ejecutar en el que se recibe un conjunto de datos en streaming, con entradas de datos constantes y consultas continuas a la vez. El ejemplo está desarrollado en varias plataformas y podréis comparar cómo reaccionó cada una de ellas, con la velocidad de entrada y salida de datos en cada plataforma y su rendimiento. Las plataformas con las que he probado en esta demo son: InterSystems IRIS, MariaDB y MySQL.

0 0
0 119