Artículo
· 25 jul, 2023 Lectura de 9 min
Modelos de datos en InterSystems IRIS

Antes de empezar a hablar de bases de datos y de los distintos modelos de datos que existen, primero explicaré qué es una base de datos y cómo se utiliza.

Una base de datos es una colección organizada de datos, almacenados y accesibles de forma electrónica. Se utiliza para almacenar y recuperar datos estructurados, semiestructurados o sin procesar, que normalmente están relacionados con un tema o una actividad.

En el corazón de toda base de datos hay al menos un modelo utilizado para describir sus datos. Y según el modelo que utilice, una base de datos puede tener características ligeramente diferentes y almacenar distintos tipos de datos.

Para escribir, recuperar, modificar, ordenar, transformar o imprimir la información de la base de datos, se utiliza un software llamado Sistema de Gestión de Bases de Datos (DBMS, por sus siglas en inglés).

El tamaño, la capacidad y el rendimiento de las bases de datos y sus respectivos DBMS ha aumentado de forma significativa. Esto ha sido posible gracias a los avances tecnológicos en varios ámbitos, como los procesadores, la memoria y almacenamiento de los ordenadores y las redes informáticas. En general, el desarrollo de la tecnología de bases de datos puede dividirse en cuatro generaciones basadas en los modelos o la estructura de los datos: navegacional, relacional, de objetos y post-relacionales.

1 2
0 168
Artículo
· 22 sep, 2022 Lectura de 5 min
¿Cómo encontrar el conjunto de datos que necesitas?

¡Hola Comunidad!

Durante años he trabajado en muchos proyectos diferentes y he podido encontrar muchos datos interesantes.

Pero la mayoría de las veces el conjunto de datos con el que trabajaba era de los clientes. Cuando hace un par de años empecé a participar en los Concursos de Programación de InterSystems, comencé a buscar conjuntos de datos web específicos.

Yo mismo he ido seleccionando algunos datos, pero he pensado: "¿Este conjunto de datos es suficiente para ayudar a otras personas?"

1 0
1 71

La invención y popularización de LLMs (Large Language Models) como GPT-4 de OpenAI ha desencadenado una ola de soluciones innovadoras que permiten aprovechar grandes volúmenes de datos no estructurados, que eran prácticamente imposibles de procesar manualmente hasta hace poco. Estas aplicaciones pueden incluir la recuperación de datos (echad un vistazo al curso sobre ML301 de Don Woodlock, con una excelente introducción a la Generación Aumentada de Recuperación), el análisis de sentimientos, e incluso agentes de IA totalmente autónomos, por nombrar sólo algunos ejemplos!

En este artículo, quiero demostrar cómo la funcionalidad de Python Embebido de IRIS puede ser utilizada para interactuar directamente con la librería Python de OpenAI, a través de la creación de una sencilla aplicación de etiquetado de datos que asignará automáticamente palabras clave a los registros que metamos en una tabla de IRIS. Estas palabras clave pueden después ser usadas para buscar y categorizar los datos, así como para analítica de datos. Utilizaré reseñas de productos realizadas por clientes como ejemplo de caso de uso.

1 0
0 67