Artículo
· 12 ago, 2021 Lectura de 13 min

Análisis en detalle del Operador InterSystems Kubernetes: Parte 2

En el artículo anterior, vimos una forma de crear un operador personalizado que administra el estado de la instancia de IRIS. Esta vez, vamos a echar un vistazo a un operador listo para usar - el Operador InterSystems Kubernetes (IKO). La documentación oficial nos ayudará a recorrer los pasos de la implementación.

Requisitos previos

Para implementar IRIS, necesitamos un clúster de Kubernetes. En este ejemplo, utilizaremos Google Kubernetes Engine (GKE), por lo que tendremos que utilizar una cuenta de Google, configurar un proyecto de Google Cloud e instalar las herramientas de línea de comandos gcloud y kubectl.

También necesitarás instalar la herramienta Helm3:

$ helm version
version.BuildInfo{Version:"v3.3.4"...}

Nota: ten en cuenta que en el nivel gratuito de Google, no todos los recursos son gratuitos.

En nuestro caso no importa el tipo de GKE que utilicemos: zonal, regional, o privada. Después de crear uno, vamos a conectarnos al clúster. Hemos creado un clúster llamado "iko" en un proyecto llamado "iko-project". En el siguiente texto, utiliza el nombre de tu propio proyecto en vez de "iko-project".

Este comando añade el clúster a nuestra configuración de clústeres locales:

$ gcloud container clusters get-credentials iko --zone europe-west2-b --project iko-project

Instalar IKO

Vamos a implementar IKO en nuestro clúster recién creado. La forma recomendada de instalar paquetes en Kubernetes es usando Helm. IKO no es una excepción y se puede instalar como un gráfico de Helm. Elige la versión 3 de Helm, ya que es más segura.

Descarga IKO desde la página Componentes de InterSystems del Centro de Soporte Internacional (WRC), creando una cuenta de desarrollador gratuita si aún no tienes una. En el momento de escribir este artículo, la última versión era 2.0.223.0.

Descarga y descomprime el archivo. Nos referiremos al directorio descomprimido como el directorio actual.

El gráfico se encuentra en el directorio chart/iris-operator. Si solo implementas este gráfico, recibirás un error al describir los contendores implementados:

Failed to pull image "intersystems/iris-operator:2.0.0.223.0": rpc error: code = Unknown desc = Error response from daemon: pull access denied for intersystems/iris-operator, repository does not exist or may require 'docker login'.

Por lo tanto, es necesario hacer que una imagen IKO esté disponible desde el clúster Kubernetes. Primero, vamos a incorporar esta imagen al Google Container Registry:

$ docker load -i image/iris_operator-2.0.0.223.0-docker.tgz
$ docker tag intersystems/iris-operator:2.0.0.223.0 eu.gcr.io/iko-project/iris-operator:2.0.0.223.0
$ docker push eu.gcr.io/iko-project/iris-operator:2.0.0.223.0

Después, debemos indicar al IKO que utilice esta nueva imagen. Debes hacerlo editando el archivo de valores de Helm:

$ vi chart/iris-operator/values.yaml
...
operator:
  registry: eu.gcr.io/iko-project
...

Ahora, estamos listos para implementar IKO en GKE:

$ helm upgrade iko chart/iris-operator --install --namespace iko --create-namespace

$ helm ls --all-namespaces --output json | jq '.[].status'
"deployed"

$ kubectl -n iko get pods # Should be Running with Readiness 1/1

Veamos los registros de IKO:

$ kubectl -n iko logs -f --tail 100 -l app=iris-operator

I1212 17:10:38.119363 1 secure_serving.go:116] Serving securely on [::]:8443
I1212 17:10:38.122306 1 operator.go:77] Starting Iris operator

La definición de recursos personalizados irisclusters.intersystems.com fue creada durante la implementación de IKO.

Puedes consultar el esquema compatible con la API, aunque es bastante largo:

$ kubectl get crd irisclusters.intersystems.com -oyaml | less

Una forma de ver todos los parámetros disponibles es utilizar el comando "explain":

$ kubectl explain irisclusters.intersystems.com

Otra forma es utilizar jq. Por ejemplo, viendo todos los ajustes de la configuración de nivel superior:

$ kubectl get crd irisclusters.intersystems.com -ojson | jq '.spec.versions[].schema.openAPIV3Schema.properties.spec.properties | to_entries[] | .key'
"configSource"
"licenseKeySecret"
"passwordHash"
"serviceTemplate"
"topology"

Al utilizar jq de esta manera (viendo los campos de configuración y sus propiedades), podemos encontrar la siguiente estructura de configuración:

configSource
  name
licenseKeySecret
  name
passwordHash
serviceTemplate
  metadata
    annotations
  spec
    clusterIP
    externalIPs
    externalTrafficPolicy
    healthCheckNodePort
    loadBalancerIP
    loadBalancerSourceRanges
    ports
    type
topology
  arbiter
    image
    podTemplate
      controller
        annotations
      metadata
        annotations
      spec
        affinity
          nodeAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
          podAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
          podAntiAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
        args
        env
        imagePullSecrets
        initContainers
        lifecycle
        livenessProbe
        nodeSelector
        priority
        priorityClassName
        readinessProbe
        resources
        schedulerName
        securityContext
        serviceAccountName
        tolerations
    preferredZones
    updateStrategy
      rollingUpdate
      type    
  compute
    image
    podTemplate
      controller
        annotations
      metadata
        annotations
      spec
        affinity
          nodeAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
          podAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
          podAntiAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
        args
        env
        imagePullSecrets
        initContainers
        lifecycle
        livenessProbe
        nodeSelector
        priority
        priorityClassName
        readinessProbe
        resources
          limits
          requests
        schedulerName
        securityContext
        serviceAccountName
        tolerations
    preferredZones
    replicas
    storage
      accessModes
      dataSource
        apiGroup
        kind
        name
      resources
        limits
        requests
      selector
      storageClassName
      volumeMode
      volumeName
    updateStrategy
      rollingUpdate
      type
  data
    image
    mirrored
    podTemplate
      controller
        annotations
      metadata
        annotations
      spec
        affinity
          nodeAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
          podAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
          podAntiAffinity
            preferredDuringSchedulingIgnoredDuringExecution
            requiredDuringSchedulingIgnoredDuringExecution
        args
        env
        imagePullSecrets
        initContainers
        lifecycle
        livenessProbe
        nodeSelector
        priority
        priorityClassName
        readinessProbe
        resources
          limits
          requests
        schedulerName
        securityContext
        serviceAccountName
        tolerations
    preferredZones
    shards
    storage
      accessModes
      dataSource
        apiGroup
        kind
        name
      resources
        limits
        requests
      selector
      storageClassName
      volumeMode
      volumeName
    updateStrategy
      rollingUpdate
      type

Hay muchos ajustes, pero no necesitas configurar todos. Los valores predeterminados son adecuados. Puedes ver ejemplos de configuración en el archivo iris_operator-2.0.0.223.0/samples.

Para ejecutar un IRIS viable mínimo, necesitamos especificar solo unos pocos ajustes, como la versión de IRIS (o de la aplicación basada en IRIS), el tamaño del almacenamiento y la clave de licencia.

Nota sobre la clave de la licencia: utilizaremos la versión Community de IRIS, por lo que no necesitamos una clave. Como no podemos omitir esta configuración, vamos a crear una información confidencial que contenga una pseudo-licencia. La generación de la información confidencial de la licencia es sencilla:

$ touch iris.key # remember that a real license file is used in the most cases
$ kubectl create secret generic iris-license --from-file=iris.key

Una descripción de IRIS entendible por IKO es:

$ cat iko.yaml
apiVersion: intersystems.com/v1alpha1
kind: IrisCluster
metadata:
  name: iko-test
spec:
  passwordHash: '' # use a default password SYS
  licenseKeySecret:
    name: iris-license # use a Secret name bolded above
  topology:
    data:
      image: intersystemsdc/iris-community:2020.4.0.524.0-zpm # Take a community IRIS
      storage:
        resources:
          requests:
            storage: 10Gi

Envía este manifiesto al clúster:

$ kubectl apply -f iko.yaml

$ kubectl get iriscluster
NAME       DATA COMPUTE MIRRORED STATUS   AGE
iko-test 1                       Creating 76s

$ kubectl -n iko logs -f --tail 100 -l app=iris-operator
db.Spec.Topology.Data.Shards = 0
I1219 15:55:57.989032 1 iriscluster.go:39] Sync/Add/Update for IrisCluster default/iko-test
I1219 15:55:58.016618 1 service.go:19] Creating Service default/iris-svc.
I1219 15:55:58.051228 1 service.go:19] Creating Service default/iko-test.
I1219 15:55:58.216363 1 statefulset.go:22] Creating StatefulSet default/iko-test-data.

Vemos que algunos recursos (Service, StatefulSet) se van a crear en un clúster en el namespace "predeterminado".

En pocos segundos, deberías ver un contenedor de IRIS en el namespace "predeterminado":

$ kubectl get po -w
NAME            READY STATUS             RESTARTS AGE
iko-test-data-0 0/1   ContainerCreating  0        2m10s

Espera un poco hasta que se extraiga la imagen de IRIS, es decir, hasta que el Estado sea Ready y Ready sea 1/1. Puedes verificar qué tipo de disco se creó:

$ kubectl get pv
NAME                                     CAPACITY ACCESS MODES  RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-b356a943-219e-4685-9140-d911dea4c106 10Gi     RWO    Delete Bound   default/iris-data-iko-test-data-0 standard 5m

La política de recuperación “Delete” (Eliminar) significa que cuando se elimina el Volumen Persistente, el disco persistente GCE también se eliminará. Hay otra política, “Retain” (Retener), que te permite guardar discos persistentes de Google para conservar los volúmenes persistentes eliminados de Kubernetes. Puedes definir una StorageClass personalizada para utilizar esta política y otras configuraciones no predeterminadas. Un ejemplo está presente en la documentación de IKO: Crear una clase de almacenamiento para el almacenamiento persistente.

Ahora, vamos a comprobar nuestro IRIS recién creado. En general, el tráfico hacia los contenedores pasa a través de los Services o Ingresses. De forma predeterminada, IKO crea un servicio de tipo ClusterIP con un nombre del campo iko.yaml metadata.name:

$ kubectl get svc iko-test
NAME     TYPE      CLUSTER-IP EXTERNAL-IP PORT(S)             AGE
iko-test ClusterIP 10.40.6.33 <none>      1972/TCP,52773/TCP  14m

Podemos llamar a este servicio usando port-forward:

$ kubectl port-forward svc/iko-test 52773

Ve a http://localhost:52773/csp/sys/UtilHome.csp y escribe _system/SYS.

Deberías ver una interfaz de usuario (IU) de IRIS que te resultará familiar.

Aplicación personalizada

Vamos a sustituir un IRIS puro por una aplicación basada en IRIS. En primer lugar, descarga la aplicación COVID-19.. No vamos a considerar aquí una implementación completa y continua, solo consideraremos unos pasos mínimos:

$ git clone https://github.com/intersystems-community/covid-19.git
$ cd covid-19
$ docker build --no-cache -t covid-19:v1 .

Como nuestro Kubernetes se ejecuta en una nube de Google, vamos a utilizar Google Docker Container Registry como un almacén de imágenes. Asumimos aquí que tienes una cuenta en Google Cloud que te permite enviar imágenes. Utiliza tu propio nombre de proyecto en los siguientes comandos:

$ docker tag covid-19:v1 eu.gcr.io/iko-project/covid-19:v1
$ docker push eu.gcr.io/iko-project/covid-19:v1

Vamos al directorio con iko.yaml, cambiamos la imagen que se encuentra allí y volvamos a implementarla. Debes considerar eliminar primero el ejemplo anterior:

$ cat iko.yaml
...  
  data:
    image: eu.gcr.io/iko-project/covid-19:v1
...
$ kubectl delete -f iko.yaml
$ kubectl -n iko delete deploy -l app=iris-operator
$ kubectl delete pvc iris-data-iko-test-data-0
$ kubectl apply -f iko.yaml

Deberás volver a crear el contenedor IRIS con esta nueva imagen.

Esta vez, vamos a proporcionar acceso externo por medio del Ingress Resource. Para que funcione, debemos implementar un Ingress Controller (elige nginx por su flexibilidad). Para proporcionar un cifrado de tráfico (TLS), también añadiremos otro componente – cert-manager.

Para instalar estos dos componentes, utilizamos una herramienta Helm, versión 3.

$ helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

$ helm upgrade nginx-ingress  \
  --namespace nginx-ingress   \
  ingress-nginx/ingress-nginx \
  --install                   \
  --atomic                    \
  --version 3.7.0             \
  --create-namespace

Observa una IP de servicio nginx (es dinámica, pero puedes hacerla estática):

$ kubectl -n nginx-ingress get svc
NAME                                   TYPE         CLUSTER-IP   EXTERNAL-IP PORT(S) AGE
nginx-ingress-ingress-nginx-controller LoadBalancer 10.40.0.103  xx.xx.xx.xx 80:32032/TCP,443:32374/TCP 88s

Nota: tu IP será distinta.

Ve a tu registrador de dominios para dar de alta y crear un nombre de dominio para esta IP. Por ejemplo, crea un registro A:

covid19.myardyas.club = xx.xx.xx.xx

Pasará algún tiempo hasta que este nuevo registro se propague a los servidores DNS. El resultado final debería ser similar a:

$ dig +short covid19.myardyas.club
xx.xx.xx.xx

Después de implementar el Ingress Controller, ahora necesitamos crear un Ingress Resource en sí mismo (usa tu propio nombre de dominio):

$ cat ingress.yaml 
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: iko-test
  annotations:
    kubernetes.io/ingress.class: nginx
    nginx.ingress.kubernetes.io/use-regex: "true"
    nginx.ingress.kubernetes.io/ssl-redirect: "true"
    certmanager.k8s.io/cluster-issuer: lets-encrypt-production # Cert manager will be deployed below
spec:
  rules:
  - host: covid19.myardyas.club
    http:
      paths:
      - backend:
          serviceName: iko-test
          servicePort: 52773
        path: /
  tls:
  - hosts:
    - covid19.myardyas.club
    secretName: covid19.myardyas.club

$ kubectl apply -f ingress.yaml

Después de un minuto, más o menos, IRIS debería estar disponible en http://covid19.myardyas.club/csp/sys/UtilHome.csp (recuerda utilizar tu nombre de dominio) y la aplicación COVID-19 en http://covid19.myardyas.club/dsw/index.html (selecciona el namespace IRISAPP).

Nota: arriba, expusimos el puerto HTTP de IRIS. Si necesitas exponer a través de nginx el puerto super-servidor TCP (1972 o 51773), lee las instrucciones en Exponer servicios TCP y UDP.

Añadir cifrado de tráfico

El último paso es añadir cifrado de tráfico. Para ello, vamos a implementar cert-manager:

$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/v0.10.0/deploy/manifests/00-crds.yaml
$ helm upgrade cert-manager \
  --namespace cert-manager  \
  jetstack/cert-manager     \
  --install                 \
  --atomic                  \
  --version v0.10.0         \
  --create-namespace
$ cat lets-encrypt-production.yaml
apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
  name: lets-encrypt-production
spec:
  acme:
    # Set your email. Let’s Encrypt will send notifications about certificates expiration
    email: mvhoma@gmail.com 
    server: https://acme-v02.api.letsencrypt.org/directory
    privateKeySecretRef:
      name: lets-encrypt-production
    solvers:
    - http01:
        ingress:
          class: nginx
$ kubectl apply -f lets-encrypt-production.yaml

Espera unos minutos hasta que cert-manager note el acceso de la aplicación de IRIS Ingress y vaya a Let's Encrypt para obtener un certificado. Puedes observar los recursos Order y Certificate en curso:

$ kubectl get order
NAME                             STATE AGE
covid19.myardyas.club-3970469834 valid 52s
$ kubectl get certificate
NAME                  READY SECRET                AGE
covid19.myardyas.club True  covid19.myardyas.club 73s

Esta vez, puedes visitar una versión más segura del sitio - https://covid19.myardyas.club/dsw/index.html:

 

Sobre el controlador de acceso nativo de Google y los certificados administrados

Google admite su propio controlador de acceso, GCE, que puedes utilizar en vez de un controlador nginx. Sin embargo, tiene algunos inconvenientes, por ejemplo, la falta de compatibilidad con las reglas para reescribir, al menos en el momento de escribir.

Además, puedes utilizar certificados administrados por Google en lugar de cert-manager. Es útil, pero la recuperación inicial del certificado y cualquier actualización de los recursos de Ingress (como la nueva ruta) provoca un tiempo de inactividad evidente. Además, los certificados administrados por Google solo funcionan con GCE, no con nginx, como se indica en los certificados administrados.

Siguientes pasos

Hemos implementado una aplicación basada en IRIS en el clúster GKE. Para exponerlo en Internet, hemos añadido un Ingress Controller y un administrador de certificaciones. Hemos probado la configuración de IrisCluster para resaltar que la configuración de IKO es sencilla. Puedes leer sobre más configuraciones en la documentación: Uso del Operador InterSystems Kubernetes.

Un solo servidor de datos está bien, pero la verdadera diversión comienza cuando añadimos ECP, mirroring y monitorización, que también están disponibles con IKO. En el próximo artículo trataremos mirroring en detalle.

Comentarios (0)1
Inicie sesión o regístrese para continuar