set tmpfile="c:\temp\test.jpg" set ftp=##class(%Net.FtpSession).%New() // connect to FTP server do ftp.Connect("","<username>","<password>") // set transfer mode to BINARY do ftp.Binary() // Move to the directory to upload do ftp.SetDirectory("/temp/upload") // Prepare a stream of files to upload set file=##class(%File).%New(tmpfile) do file.Open("UK\BIN\") // upload file // 1st argument: File name to create at upload destination // 2nd argument: File stream to upload do ftp.Store("test.jpg",file) // Logout from ftp server do ftp.Logout() // close the file do file.Close() // (Optional) Delete the uploaded file //do ##class(%File).Delete(tmpfile)
2. 从FTP服务器下载
set ftp=##class(%Net.FtpSession).%New() // Connect to ftp server do ftp.Connect("","<username>","<password>") // Set the transfer mode to BINARY do ftp.Binary() // Prepare a file stream to download and store set stream=##class(%FileBinaryStream).%New() do stream.LinkToFile("c:\temp\testdownload.jpg") // Go to the download directory do ftp.SetDirectory("/temp/download") // Download the file and close the stream do ftp.Retrieve("test.jpg",stream) do stream.SaveStream() Set stream="" // Logout from the ftp server do ftp.Logout()
These questions will be highlighted with the #Key Question tag, and their authors will get the Key Question badge on Global Masters (when it's back).
If you find the key question(s) from other communities interesting, just drop us a line in the comments and we will translate the question(s) and the accepted answer(s).
Congrats, and thank you all for your interesting questions. Keep them coming!
Hace unos días vi a un youtuber hablando de cómo crear una red neuronal (en español)
En resumen, utiliza la red neuronal para aprender a convertir grados Celsius a grados Fahrenheit. Grados Fahrenheit= (Grados Celsius × 9/5) +32
En este vídeo utiliza Python para crear la red neuronal, donde crea una tabla con los valores de grados Celsius y grados Fahrenheit. Luego hace 1000 entrenamientos al modelo que ha creado, cuando consulta la predicción a un valor que no está en la tabla que ha utilizado para entrenar, le da un valor correcto (o bastante cercano).
Bueno, quería hacer el mismo ejemplo usando IRIS e Intersystems IntegratedML, así que creé una tabla con los dos valores y siguiendo las instrucciones de "Introducción al aprendizaje automático"
Class St.MLL.celsiusFahrenheit Extends%Persistent
{
/// Value of CelsiusProperty Celsius As%Decimal;/// Value of FahrenheitProperty Fahrenheit As%Decimal;/// Populate tableClassMethod Populate() As%Status
{
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(-40,-40))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(-10,14))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(0,32))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(8,46))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(15,59))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(22,72))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(38,100))
Return$$$OK
}
ClassMethod Training() As%Status
{
write"Creating model celsiusFahrenheitModel",!
&sql(CREATEMODEL celsiusFahrenheitModel PREDICTING (Fahrenheit) FROM St_MLL.celsiusFahrenheit)
write"Training model",!
for i=1:1:100
{
&sql(TRAIN MODEL celsiusFahrenheitModel As FirstModel)
write"Step "_i_" of 100",!
}
write"Validate model celsiusFahrenheitModel",!
&sql(VALIDATEMODEL celsiusFahrenheitModel FROM St_MLL.celsiusFahrenheit)
}
}
Hice lo mismo, entrenando el modelo 100 veces.
He creado otra tabla con los valores para probar el modelo.
Class St.MLL.celsiusTest Extends%Persistent
{
/// Value of CelsiusProperty Celsius As%Decimal;/// Value of FahrenheitProperty Fahrenheit As%Decimal;/// Populate tableClassMethod Populate() As%Status
{
&sql(INSERTINTO St_MLL.celsiusTest VALUES(10,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(20,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(30,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(40,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(50,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(60,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(70,0))
Return$$$OK
}
}
Pero no parece funcionar porque siempre devuelve el mismo valor de predicción.
USER > do ##class(St.MLL.celsiusFahrenheit).Populate()
USER > do ##class(St.MLL.celsiusFahrenheit).Training()
Creating model celsiusFahrenheitModel
Training model
Step 1 of 100
Step 2 of 100
Step 3 of 100
Step 4 of 100
......
Step 99 of 100
Step 100 of 100
Validate model celsiusFahrenheitModel
USER > do ##class(St.MLL.celsiusTest).Populate()
USER >
Estaba esperando:
Celisu
Fahrenheit
prediction
10
0
50
20
0
68
30
0
86
40
0
104
50
0
122
60
0
140
70
0
158
Creí que, una vez entrenado el modelo, podría predecir qué valor le corresponde, porque no sabemos cuál es el valor en Fahrenheit. ¿Qué se está haciendo mal? ¿Estoy intentando hacer algo que no es posible? Es decir, que mi modelo aprenda cuál es el patrón y yo solo tengo que preguntar el valor de la predicción de mi modelo según el valor de los grados centígrados.
Some days ago, I've seen a youtuber talking about how to create a neural network (sorry, is in spanish)
In short, it uses the neural network to learn how to convert degrees Celsius to degrees Fahrenheit. Degrees Fahrenheit = (degrees Celsius × 9/5) +32 In this video, he uses Python to create the neural network, where he creates a table with the values of degrees Celsius and degrees Fahrenheit. Then he does 1000 trainings to the model that he has created, when he consults the prediction at a value that is not in the table that he has used to train, it gives a correct (or fairly close) value.
Well, I wanted to do the same example using IRIS and Intersystems IntegratedML, so I created a table with the two values, and following the instructions in "Introduction to machine learning"
Class St.MLL.celsiusFahrenheit Extends%Persistent
{
/// Value of CelsiusProperty Celsius As%Decimal;/// Value of FahrenheitProperty Fahrenheit As%Decimal;/// Populate tableClassMethod Populate() As%Status
{
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(-40,-40))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(-10,14))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(0,32))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(8,46))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(15,59))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(22,72))
&sql(INSERTINTO St_MLL.celsiusFahrenheit VALUES(38,100))
Return$$$OK
}
ClassMethod Training() As%Status
{
write"Creating model celsiusFahrenheitModel",!
&sql(CREATEMODEL celsiusFahrenheitModel PREDICTING (Fahrenheit) FROM St_MLL.celsiusFahrenheit)
write"Training model",!
for i=1:1:100
{
&sql(TRAIN MODEL celsiusFahrenheitModel As FirstModel)
write"Step "_i_" of 100",!
}
write"Validate model celsiusFahrenheitModel",!
&sql(VALIDATEMODEL celsiusFahrenheitModel FROM St_MLL.celsiusFahrenheit)
}
}
I've done the same, training the model 100 times.
I've created other table with the values to test the model
Class St.MLL.celsiusTest Extends%Persistent
{
/// Value of CelsiusProperty Celsius As%Decimal;/// Value of FahrenheitProperty Fahrenheit As%Decimal;/// Populate tableClassMethod Populate() As%Status
{
&sql(INSERTINTO St_MLL.celsiusTest VALUES(10,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(20,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(30,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(40,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(50,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(60,0))
&sql(INSERTINTO St_MLL.celsiusTest VALUES(70,0))
Return$$$OK
}
}
But it doesn't seem to work, because it always returns the same prediction value.
USER > do ##class(St.MLL.celsiusFahrenheit).Populate()
USER > do ##class(St.MLL.celsiusFahrenheit).Training()
Creating model celsiusFahrenheitModel
Training model
Step 1 of 100
Step 2 of 100
Step 3 of 100
Step 4 of 100
......
Step 99 of 100
Step 100 of 100
Validate model celsiusFahrenheitModel
USER > do ##class(St.MLL.celsiusTest).Populate()
USER >
I was expecting:
Celisu
Fahrenheit
prediction
10
0
50
20
0
68
30
0
86
40
0
104
50
0
122
60
0
140
70
0
158
I believed that, once the model was trained, it could predict what value corresponds to it, because we do not know what the value is in Fahrenheit. What is being done wrong? Am I trying to do something that is not possible? That is, have my model learn what the pattern is and I only have to ask for the value of my model's prediction according to the value of degrees Celsius.