
Tips & Tricks: Use self-destructing debugging code
Published on InterSystems Developer Community (https://community.intersystems.com)

        Artículo      
 Ben Spead  · 30 sep, 2019  Lectura de 2 min   
   
  

Tips & Tricks: Use self-destructing debugging code
Every developer has made the mistake of accidentally leaving temporary debug code in place when they meant to
remove it after debugging is complete.  The great thing about writing in ObjectScript is that there is a way to make
temporary code be truly temporary and automatically self-destruct!  This can also be done in such a way that the
code has no change of making it into your source control stream, which can be helpful as well.

The secret to this lies in making use of the "Intermediate code" (.INT) which is generated when you compile classes
(.CLS), routine code (.MAC) or CSP pages (.CSP).  The INT code is then used to create the OBJ code which
actually executes.

(see 
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_intro#GORIENT_in
tro_work_together  for more details on this compilation flow)

INT code can actually be edited directly in the IDE, but since it is generated code it is generally not source
controlled.  Once an INT file has been edited it can then be compiled in order to create new OBJ code, which
impacts the execution logic.  However, these edits are self-destructing as they will automatically be overwritten
when an upstream controlled configuration item is compiled (e.g. CLS, MAC, CSP, etc).  

Leveraging the self-destructing nature of generated INT files can be helpful in the following situations:

Adding debugging code 
Adding a breakpoint to interactive debugging
Adding additional logging (e.g. DO LOG^%ETN)
Inserting a short-term fix into a non-development environment without checking out the source file for an
emergency edit

*ONLY USE THIS IF* your environments receive source directly and automatically from source
control ... if not then the "temporary" fix could be longer lived than intended

With this approach, any time new source gets synced or pushed and then compiled it will rebuild all INT code and
blow away anything temporary there-in.  Very helpful to ensure that these temporary edits are indeed temporary!

#Depuración #Entorno de desarrollo #Consejos y trucos #Caché #Ensemble #InterSystems IRIS #InterSystems
IRIS for Health  
 

    URL de fuente:https://es.community.intersystems.com/node/467966 

Page 1 of 1

https://es.community.intersystems.com/user/ben-spead-0
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_intro#GORIENT_intro_work_together
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_intro#GORIENT_intro_work_together
https://es.community.intersystems.com/tags/debugging
https://es.community.intersystems.com/tags/development-environment
https://es.community.intersystems.com/tags/tips-tricks
https://es.community.intersystems.com/tags/cach%C3%A9
https://es.community.intersystems.com/tags/ensemble
https://es.community.intersystems.com/tags/intersystems-iris
https://es.community.intersystems.com/tags/intersystems-iris-health
https://es.community.intersystems.com/tags/intersystems-iris-health
https://es.community.intersystems.com/https://es.community.intersystems.com/node/467966

